

0703C100 General Chemistry I

Time: May 18, 2026 - June 19, 2026; M, T, Th, 1:00pm-4:20pm

Office Hours: 2 hours (according to the teaching schedule)

Contact Hours: 45 (50 minutes each)

Credits: 3

Location: Online, Zoom

Instructor: TBA

Email: TBA

Course Description

General Chemistry I is designed as an introduction to the most fundamental laws, theories, and principles of general chemistry. It is appropriate for students that have not had an advanced chemistry course in high school, and for those majoring in the environmental, earth, and social sciences, as well as disciplines such as architecture, business, and the humanities. The goal of this course is to provide students with a firm foundation on the basic concepts and principles of chemistry, by working through example cases and practice problems.

Course Structure

The course content is divided into 10 modules:

 Module I (Matter, Energy, and Measurement) focuses on central ideas about matter and energy; about the process of science, as it relates to the origins of chemistry; about units of measurement for mass, length, volume, density, and temperature; about applications of chemical problem-solving to unit conversions; and about uncertainty in measurements and the distinction between accuracy and precision.

- Module II (*Atoms, molecules, and Ions*) examines the properties and composition of matter on the microscopic and atomic scales, including: the differences between elements, compounds, and mixtures, and between atoms, ions, isotopes, and molecules; the evolution of the atomic theory and the nuclear atom model; we explore the atomic arrangement in the periodic table; we introduce chemical bonding in the formation of ionic compounds and covalent substances; we derive names and formulas of inorganic compounds and some simple organic compounds.
- Module III (*Chemical Reactions and Reaction Stoichiometry*) relate the mass of a substance to the number of chemical entities comprising it (atoms, ions, molecules, or formula units) and apply this relationship to formulas and equations. We start by defining the mole, and using it to convert between mass and number of entities, and to derive a chemical formula from mass analysis. We explore how formulas relate to molecular structures, and learn how to write and balance chemical equations. We calculate the empirical formula from analyses, amounts of reactants and products in a reaction, and determine limiting reactants and reaction yields.
- Module IV (*Reactions in Aqueous Solutions*) examines the underlying nature of three classes of reactions, and the complex part that water plays in aqueous chemistry. We start by exploring the molecular structure of water and its role as a solvent, then discuss molarity as a way to express the concentration of an ionic or covalent compound in a solution. We write equations for aqueous ionic reactions, describe precipitation reactions and their stoichiometry, explore acid-base reactions as proton-transfer processes, examine oxidation-reduction reactions in the formation of ionic and covalent substances. We calculate the concentration of solutions using molarity as the unit.
- Module V (*Thermochemistry*) investigates how heat, or thermal energy, flows when matter changes, how to measure the quantity of heat for a given change, and how to determine the direction and magnitude of heat flow for any reaction. We

begin by exploring energy transformation and flow between systems, then we discuss the units of energy and identify the heat of a reaction as a change in enthalpy. We describe how a calorimeter measures heat and how the quantity of heat in a reaction is proportional to the amounts of substances. We define standard conditions in order to compare enthalpies of reactions and see how to obtain the change in enthalpy for any reaction, and discuss some current and future energy sources.

- Module VI (*Electronic Structure of Atoms*) explores recurring patterns of electron distributions in atoms to see how they account for the recurring behavior of the elements. We begin by describing a new quantum number and a restriction on the number of electrons in an orbital. We then explore electrostatic effects that lead to splitting of atomic energy levels into sublevels, and recognize how this filling order correlates with the order of elements in the periodic table.
- Module VII (*Periodic Properties of the Elements*) examines the development of the periodic table in order to understand the reasons for periodic trends with regard of atomic size, ionization energy, electronegativity. We then explore some common patters of reactivity across the periodic table. We utilize the periodic table and our knowledge of electron configurations to better understand the chemistry of alkali metals and alkaline earth metals.
- Module VIII (*Basic Concepts of Chemical Bonding*) examines how atomic properties give rise to two models of chemical bonding (ionic and covalent) and how each model explains the behavior of substances. We see how metals and nonmetals combine via these types of bonding and learn how to depict atoms and ions with Lewis symbols. We look at how a bond forms and discuss the relations among bond order, energy, and length. We explore the relationship between bond energy and the enthalpy change of a reaction. We examine periodic trends in electronegativity and learn its role in the range of bonding.
- Module IX (*Molecular Geometry and Bonding Theories*) examines the threedimensional shapes of molecules as described by the valence-shell electron-pair repulsion (VSEPR) model. We then examine how multiple bonds and lone pairs

affect the molecular geometry. We discuss the common types of hybridization and explore the connection between the type of hybridization and molecular geometries predicted by the VSEPR model.

• Module X (*Gases*) explores the physical behavior of gases and the theory that explains this behavior. We begin by comparing the behavior of solids, liquids, and gases, the discuss methods for measuring gas pressure. We consider laws that describe the behavior of a gas and its volume changes, and rearrange the ideal gas law to determine the density and molar mass of an unknown gas, the partial pressure of a gas in a mixture, and the amounts of reactants and products in a chemical change. We relate gas laws to the kinetic-molecular theory, and apply key ideas about gas behavior to Earth's atmosphere.

Required Textbook

Chemistry, The Central Science, 14th edition (2018), by Theodore E. Brown, H. Eugene LeMay, Bruce E. Bursten, Catherine Murphy, Patrick Woodward, and Matthew E. Stoltzfus. Publisher: Pearson, ISBN-13: 978-0134414232.

Assessment

Your final grade is based on the following components:

Quizzes/Homework	25%
Practical Exercises	20%
Midterm Exam	25%
Final Exam	30%
Total	100%

Grading Scale

The instructor will use the grading system as applied by JNU:

Definition	Letter Grade	Score
Excellent	A	90~100
Good	В	80~89
Satisfactory	С	70~79

0703C100 General Chemistry I

Poor	D	60~69
Failed	E	Below 60

Quizzes/Homework

Multiple self-assessment quizzes and homework assignments will be available to facilitate students' understanding of key concepts. These quizzes and homework assignments will be assigned on a weekly basis, allowing students to regularly practice and reinforce their learning.

Practical Exercises

Practical exercises will be incorporated into each class session, providing students with opportunities to apply their conceptual knowledge actively.

Class Schedule

The class schedule serves as an overview of the major topics covered in the course. It is important to note that adjustments to this calendar may be necessary to better support students' academic development and learning needs.

Week 1:

- Monday: Chapter 1: Matter, Energy, and Measurement
- Tuesday: Chapter 2: Atoms, Molecules, and Ions
- Thursday: Chapter 3: Chemical Reactions and Reaction Stoichiometry

Week 2:

- Monday: Chapter 3: Chemical Reactions and Reaction Stoichiometry
- Tuesday: Chapter 4: Reactions in Aqueous Solution
- Thursday: Chapter 4: Reactions in Aqueous Solution

Week 3:

- Monday: Chapter 5: Thermochemistry
- Tuesday: Chapter 6: Electronic Structure of Atoms
- Thursday: Midterm Exam (Chapters 1-5)

Week 4:

- Monday: Chapter 7: Periodic Properties of the Elements
- Tuesday: Chapter 8: Basic Concepts of Chemical Bonding
- Thursday: Chapter 8: Basic Concepts of Chemical Bonding

Week 5:

- Monday: Chapter 9: Molecular Geometry and Bonding Theories
- Tuesday: Chapter 10: Gases
- Thursday: Final exam (Chapters 1-10)

Attendance

You are expected to log into Zoom to attend the class and participate in class discussions. Attendance will be recorded each class, contributing to students' participation record. It is essential for students to notify the instructor as soon as possible if they need to request a leave of absence.

The following are specific requirements for participating in live classes:

- Students must have their cameras on during the session.
- Active engagement is expected, which includes speaking or answering questions when prompted.
- Arriving more than 10 minutes late will be marked as an absence.
- Failure to adhere to these policies may result in penalties.

Consistent absences can adversely impact students' final grades, underscoring the importance of participation in the course

Exams

Midterm and final exams are in-class exams, overseen by an invigilator. Students must have their cameras enabled during the exams to ensure proper monitoring. These assessments will follow a closed-book format, which means that while students are permitted to consult any printed course materials, including a cheat sheet, they are explicitly prohibited from using electronic devices. This structure helps maintain academic integrity and evaluates students' knowledge effectively.

The requirement for physical presence and camera usage serves to deter any form of misconduct. It is emphasized that the exams are designed to assess the understanding of course content, thus necessitating honest effort from each student.

Academic Integrity

As members of the Jinan University academic community, students are expected to be honest in all of their academic coursework and activities. Academic dishonesty, includes (but is not limited to) cheating on assignments or examinations; plagiarizing, i.e., misrepresenting as one's own work any work done by another; submitting the same paper, or a substantially similar paper, to meet the requirements of more than one course without the approval and consent of the instructors concerned; or sabotaging other students' work within these general definitions. Instructors, however, determine what constitutes academic misconduct in the courses they teach. Students found guilty of academic misconduct in any portion of the academic work face penalties that range from the lowering of their course grade to awarding a grade of E for the entire course.